Physiological and Biochemical Responses of Yarrowia lipolytica to Dehydration Induced by Air-Drying and Freezing
نویسندگان
چکیده
Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell's ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase) and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y. lipolytica mechanisms of cellular response to dehydration and provide a basis to better understand its ability to tolerate anhydrobiosis.
منابع مشابه
The production of Yarrowia lipolytica lipase powder by improved spray-drying method
Lipase is used in the production of foods, flavor enhancers, detergents, cosmetics and pharmaceuticals. A common impediment to the production of commercial enzymes is their low-stability aqueous solutions. In this study, the downstream process was investigated to obtain a stable spray-dried lipase powder of Yarrowia lipolytica. The enzyme solution samples were supplemented with different concen...
متن کاملEvaluation of Biochemical and Physiological Responses of Seven Olive Cultivars in Relation to Freezing Tolerance
Abstract: Temperature is one of the most important factors limiting the production and distribution of olive. Different olive cultivars show diverse responses to low temperature and so, the selection of cold tolerant cultivars is the most effective method to avoid frost damages. The main purpose of this study was to compare freezing tolerance of seven olive cultivars and to investigate the rel...
متن کاملEffect of Plant Oils upon Lipase and Citric Acid Production in Yarrowia lipolytica Yeast
The nonconventional yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates to produce organic acids, single-cell oil, lipases, and so forth. The aim of this study was to investigate the biochemical behavior and simultaneous production of valuable metabolites such as lipase, citric acid (CA), and single-cell protein (SCP) by Yarrowia lipolytica DSM 3286 grown on various plant...
متن کاملDehydration Characteristics of Whole Lemons in a Convective Hot Air Dryer
In this study, whole lemons were dried using a laboratory convective hot air dryer and the effects of drying temperature on dehydration behaviour and mass transfer characteristics of the lemons were investigated. The drying experiments were conducted using air temperatures of 50, 60 and 75 °C and air velocity of 1 m/s. It was observed that the drying temperature affected the drying time and...
متن کاملThe optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture
Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles b...
متن کامل